Tensor analysis
نویسندگان
چکیده
منابع مشابه
Tensor Subspace Analysis
Previous work has demonstrated that the image variations of many objects (human faces in particular) under variable lighting can be effectively modeled by low dimensional linear spaces. The typical linear subspace learning algorithms include Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Locality Preserving Projection (LPP). All of these methods consider an n1 × n2 ...
متن کاملTensor-Factor Analysis
A nonparametric factor analysis framework is developed for tensor-variate data. The dictionary elements (factor loadings) are inferred as tensors, as opposed to vectors. Our tensor-factor analysis (TFA) framework is developed in the context of the beta-process factor analysis (BPFA) using a nonparametric tensor decomposition for each dictionary element. We extend the multiplicative gamma prior ...
متن کاملHomotopy Analysis for Tensor PCA
Developing efficient and guaranteed nonconvex algorithms has been an important challenge in modern machine learning. Algorithms with good empirical performance such as stochastic gradient descent often lack theoretical guarantees. In this paper, we analyze the class of homotopy or continuation methods for global optimization of nonconvex functions. These methods start from an objective function...
متن کاملStatistical Analysis of Tensor Fields
In this paper, we propose a Riemannian framework for statistical analysis of tensor fields. Existing approaches to this problem have been mainly voxel-based that overlook the correlation between tensors at different voxels. In our approach, the tensor fields are considered as points in a high-dimensional Riemannian product space and accordingly, we extend Principal Geodesic Analysis (PGA) to th...
متن کاملMulti-aspect-streaming tensor analysis
Tensor analysis is a powerful tool for multiway problems in data mining, signal processing, pattern recognition and many other areas. Nowadays, the most important challenges in tensor analysis are efficiency and adaptability. Still, the majority of techniques are not scalable or not applicable in streaming settings. One of the promising frameworks that simultaneously addresses these two issues ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 1976
ISSN: 0001-8708
DOI: 10.1016/0001-8708(76)90161-4